Natural Language Inference | Analysis and Paper List

NLI Introduction

Challenges

  • 词语匹配的多元性(同义词、一词多义)lexical gap、lexical variant;
  • 短语匹配的结构性、多粒度计算语义;
  • 文本匹配的层次性;
  • 利用不相似部分的信息;
  • 自然语言的基础现象:Variability of Semantic expression
    • 是语言歧义的对偶问题;
    • 语义表达的多变性、语言结构的多样性;

Approachs

models on NLI(Natural Language Infernce), concluded as: sentence-encoding-based vs. interaction-based

  • 基于encoding的基本框架:
    • input encoding —>concat vector —>vector & element-wise difference/product—> prediction
    • Pros:
      • 1、可预处理;2、易于建立索引;
    • Cons:
      • 1、失去语义焦点,易语义偏移;2、词上下文重要性难以衡量;
  • 基于交互的基本框架:
    • input encoding —> inference(interaction) —> composition —> prediction
    • Pros:
      • 1、把握语义焦点;2、可以对上下文重要性进行合理的建模;
    • Cons:
      • 1、信息损失(主要由交互带来);

Measure of Similarity

Models of Sentence Encoding Based

  • BiLSTM-Max
  • NSE
  • Deep Gated Attn. BiLSTM
  • Residual Stacked Encoder
  • Reinforced Self-Attention Network
  • Distance-based Self-Attention Network
  • Hierarchical BiLSTM with Max Pooling
  • Dynamic Self-Attention Model

Models of Interaction Based

  • Decomposable Attention
  • ESIM
  • KIM
  • Densely Interactive Inference Network (DIIN)
  • BIMPM
  • Multi-Way Attention
  • DR-BiLSTM
  • CAFE
  • Densely-Connected Recurrent and Co-Attentive Network
  • DMAN
  • SLRC
  • AFN
**** END of This Post. Thank for Your READING ****
If you have any Question, welcome to Email me or leave your comments below.